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We calculate asymptotics for the linear (n,o)-widths of the Sobolev space W;
equipped with the Gaussian measure JL in the L q • That is, we consider the quantity

).•. .s(W;,Lq,JL)= jnf A.(W;\G,Lq),
GcW2,J4(G)~J

where A.(K, X) is the linear n-width of the set K in the space X. © 1994 Academic

Press, Inc.

1. INTRODUCTION

Let X be a normed linear space and W a subset of X. Let A be a linear
operator from X to X. Let A W denote the image of Wunder A. The
quantity

A(W, A, X)= sup Ilx-Axli x
XE W

is called the linear distance of the image A W from the set W.
For each n = 0, 1, ... , we consider the linear n-width of the set W in X. It

is defined by

An( W, X) = inf inf A( W, An' X),
:£'" A"

where 2;, runs over all the linear subspaces in X with dimension at most
n and An runs over all linear operators from X to 2;,.

We assume that the set W is equipped with a Borel field f!l, which
consists of the open subsets. Let J1 be a probability measure defined on f!l.
That is, J1 is a a-additive nonnegative function on f!l and J1( W) = 1.
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Let DE [0, 1] be any given number. We define the linear (n, D)-width of
the set W in the space X for the measure J1. as follows. Set

(1 )

where GJ runs over all the subsets GJ E fJI with measure J1.( GJ) ~ D. The
quantity An. J may be understood as the J1.-distribution of the best linear
approximation on all subsets of W.

Detailed information about the usual linear widths may be found in
[17, 13]. Papers connected with calculating the asymptotics of linear
n-widths include [3,6,8,2].

Quantities similar to (1) were considered in [19]. In the books of Traub
and Wozniakowski [18] and Traub et at. [19], a different problem con­
nected with the best approximation of the function classes, equipped with
measure in a Hilbert space, was investigated. Calculation of n-widths of the
smooth function classes equipped with some given measure are included in
[20, 9, 1, 11].

Consider the Hilbert space L 2 of all functions x(t), t E [0, 2n], with the
Fourier series

co

x(t) = I Ck exp(ikt)
k= -00

and inner product

1 f2l[
<x, y) = 2n 0 x(t) y(t) dt

In the space L 2 we define the Veil r-fractional derivative (r E IR)

00

x(r)(t) = L (ik)' Ck exp(ikt)
k ~ - oc

(ik)' = Ikl r exp (~i sign r)).
In this work we consider the Sobolev space W; (r>O), which consists

of all functions x EL 2 , with mean value Co = 0, and semi-norm
[[xII w; = <x(rJ, x(r). The space W; is a Hilbert space with the inner
product defined by <x, y») = <x(r!, y<r l ).

We equip W; with a Gaussian measure J1. whose mean is zero and whose
correlation operator C/' has eigenfunctions ek = exp( ik( . ») and eigenvalues
Ak=alkl- s (a>0,s>1). That is, C/,ek=Akek> kE1:'\{O}.

In particular on the cylindrical subsets in th space W; given by
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(3)

where E0 is any Borel subset in IR m
-

n + 1 (m>n), ei- r)= (ik)-r exp(ik(·»,
k = ± I, ±2, ..., is an orthonormal system in W;, and the measure Il( G) is
equal to

Il(G) = kiln (2nAk)-1/2 t exp( -1 k~n Ak-IU~)dUn"'dUm. (2)

Detailed information about Gaussian measures may be found in the
books of Kuo [5] and Traub et al. [19].

Consider the Banach space L q , I ~ q ~ 00, which consists of all function
x on [0, 2n] with norm

It is known that if r> 1/2 - I/q, then the space W; is compactly
embeddable in the space L q (see, e.g., [12]).

Let c, Ci , c;, i=O, I, ... be positive constants depending solely upon the
parameter r, q, a, and s. For two positive functions a(y) and b(y), YEE0,
we write a( y) x b(y) or a(y) ~ b(y) if there exist constants C L, C2, or C such
that C 1 ~ a(y)/b(y) ~ C2 or respectively a(y) ~ cb(y) for all y E E0.

The aim of this paper is to calculate the asymptotics of the linear
(n, b)-widths )'n, b (W;, L q , Il). Note that the two-sided estimation for
An. b( W;, L 2, It) may be obtained from the work of Traub et at. [19].

THEOREM 1. Let 2 ~ q < 00, r> 1/2 - l/q, s> 1, a> O. The linear
(n, b)-widths of w; with measure Il in the space L q satisfy the asymptotics

• r ~I+n-I/q~
An.b(W2,Lq,Il)~ nr +(s-JJ/2 '

for any bE (0, n
We denote the unit ball in W; by BW;= {XE W;: Ilxllw2~ 1}. The

following inequality (see [19, p. 469]) holds for the measure of the unit ball

Il(BW;»1-5exp ( 2 I ),
trace CI'

where trace CI' = L~~ _00 )'k = 2a L~~ 1 k -so Therefore for all a E Is ;:
(0, (41n 5((S)-I], '(S)=L~~Ik- s we have from (3) the inequality
Il(BW;) ~ c > O. We always assume a E Is.

We define the conditional measure by

'(G) = Il(G n BW;)
Il Il(BW;)

(G E .?l).
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We may view fl' as a probability measure defined on the sets Q of the
field ~ n BW; and fl'(Q) = fl(Q)/fl(BW2).

THEOREM 2. Let 2 ~ q < 00, r> 1/2 - l/q, s> 1, a E Is. The following
asymptotic equivalence holds for the ball BW; with measure fl' in the space
L q ,

for any c5 E (0, n
Note that for linear n-widths of the ball BW; in the space L q we have

the equality (see [3])

(2 ~ q ~ 00). (4)

Comparing Theorem 2 and the asymptotics of (4) shows, in particular,
that if we throw out from the class BW; some set G with measure
fl'(G)~exp(-n2Iq), then we obtain on the remaining set BW;\G the
approximation order n - r - (s - 1 )/2• If s = 1+2e, where e is an arbitrary
positive small number, then the approximation order is n -r - " which is
essentially smaller than (4).

Using Theorem 2 we obtain the asymptotic equivalence for the best
approximation on the class BW; in the space L q by trigonometric polyno­
mials of degree n.

Let :y" denote the space of trigonometric polynomials of degree n, i.e.,

n

y(t) = L Ck exp(ikt).
k= ~n

Let the c5-distance from the class B W; to :y" in the space L q for the
measure fl' be defined by

En,b(BW;,Lq,fl')= inf sup infllx-YIILq'
(G:I"(G)<;b} xEBW;\G YE§,;

THEOREM 3. If the conditions of Theorem 2 hold, then
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For c5 = 0, this result is known (see [12])

(5)

Comparing the asymptotics (5) and Theorem 3 shows, in particular,
that on the set BW; \G, where G is some set of BW; measure
,u'(G)~exp(n-2/q), we can obtain an approximation order essentially
smaller than (5).

The proofs of Theorems 1-3 use discretisation techniques (see [7]). This
method is based on the reduction of the caculation of the widths of a given
class, to the calculation of widths of finite-dimensional set equipped with
the Gaussian measure.

2. THE ESTIMATION OF LINEAR (n, c5)-WIDTHS OF

FINITE-DIMENSIONAL SETS

In this section we calculate the linear (n, b)-widths in the space jRm

equipped with the Gaussian measure in the I;-norm.
Let 1'; denote the m-dimensional normed space consisting of vectors

x = (Xl' ... , X m ) E IRm with norm

1~p < 00

p= 00.

Let B;(p) = {X E I;: Ilxll p ;( p} be the ball of radius p in I;. Set B; =
B;(l ).

In the space IR m we consider the Gaussian measure Y = Ym' which is
defined as

where G is any Borel set in IRm. Obviously, y(lRm
) = 1. We use the following

measure estimates for balls (see, e.g., [19]). Namely,

(6)

where c is an absolute constant, and p any positive number.
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Consider the linear (n, b)-widths, with measure, in the I;-norm, namely

).n,<5(lR m,I;,y)=infinf sup Ilx-Anxll q .

Go An X E [Rm\Gli

where G <5 runs over all Borel sets in IRm with measure y( G<5) =E; b, A n runs
over all linear operators on IR m with rank at most n, and bE [0, 1].

THEOREM 4. Let 2=E;q< 00, m~2n>0, and bE(O, 1/2]. Then

A.n. <5(lR m, I;, y) x m l
/
q+~.

We first prove two auxiliary lemmas. We use some known estimations.
Namely, if u> I/J2, then (see [15])

Ix, 1 1 2' e - t dt =E; - e - U ,

U 2u

2 fU _,2 1 _u2
C. e dt =E; 1- C. e ,

yn 0 2 y n
(7)

LEMMA I. Let 2 =E; q < 00 and bE [0, ~]. For some constant Co depending
only on q, we have

Y(XElRm: IIxllq~co(ml/q+~)}=E;{). (8)

Proof Let f(x)=lIxllq. Then If(x)-f(y)I=E;lIx-YI12; hence f is a
Lipschitz map on IRm with Lipschitz constant (J = 1. By the Maurey-Pisier
inequality, see [14], we have for all t > 0,

(9)

But by Kahane's inequality, see [4], Efx (Efq)l/q x ql/2m l/q. Therefore for
some absolute constant c> O.

y(f~ t + cql/2ml/q) =E; exp( - t2/2),

and taking t = (In b - I) 1/2 completes the proof.

LEMMA 2. Let bE [0, e - 1]. For any vector Z E IR m
, lve have

y(x: I(x, z)1 ~ c~ IIz112 ~ln b- 1
) ~ b,

(10)

where ( ., , ) is the standard inner product, and c~ an absolute constant.

Proof Since y is an invariant measure with respect to orthogonal trans­
formation in the space [Rm, it suffices to prove the lemma for the vector
z* = (1IzI12' 0, ..., 0). Using inequality (7) we have

The lemma now follows.



80 VITALY MAIOROV

Proof of Theorem 4. We first prove the upper bound for the linear
(n, b)-widths. Consider the set in ll\i!m:

From Lemma 1 we have the estimation y(Qb) ~ b. Therefore

To prove the lower bound, let e be any positive number. We define a linear
operator T with rank at most n and a set G c ll\i!m with measure y( G) ~ 15,
for which

An. b ~ sup Ilx - Txll q- e.
:cER"'\G

We can describe the operator T by

(11 )

n

Tx = L (x, UdVk

k~l

where Uk' Vk are vectors in ll\i!m. We have for l/q + l/q' = 1

/Ix - Txllq = max (x - Tx, y) = max (y - ±(y, Vk)Ub x)
YEn; Y k~l

(12 )

where e; is the ith unit vector. Let z; = e; - L~ = I (e;, vd Uk' Consider the
set

m

H= U Hi,
;~l

We know (see [16J) that for any vectors Uk' Vb k= 1, ..., n, there exists an

index iosuch that Ilz;o 112 ~ 1/J2. Therefore from Lemma 2
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From inequalities (12) and (13) and since y(G)~b, we have

sup Ilx-Txllq~c~J!lnb-'.
xERm\G

From here and inequality (11), letting e~ 0, we obtain

An, J ~ c~ J! In £5 - 1.

81

(14 )

(15)

We obtain one more lower estimate for An, J. Using Holder's inequality we
have

An.J~ml/q-l/2)"n,J(lRm, l'!j, y)=m l/q- I /2 inf sup p(x),
G:y(G)<;J xeR"'\G

where p(x) = (L7'=-ln X~)1/2. From inequality (6) it follows that

y(p(x) ~ c jrn) = Ym_n(lRm-n\B'!j-n(c Jm - n» ~!.

Therefore, for any £5 < ! using m ~ 2n, we obtain

An. J ~ m 1
/
q- 1

/
2c Jm - n ~fi m 1

/
q
,

From inequalities (14) and (15) we obtain the lower estimate for I..n.J, and
Theorem 4 is proved.

Consider in the space IR m the Gaussian measures with parameter IX given by

(
IX)m/2 J (IX m )Y=Ym= - exp -- I x~ dx 1 •• .. ·dxm·
2n G 2i~1

Set B = B'!j(jrn). From inequality (6) for IX> 1X0== 1+ 2 In 10 we have

Y(B) ~!.

Define on IRm the conditional measure concentrated on the ball B, i.e.,

-'(G) = Y(G (\ B)
Y y(B)

Obviously feB) = 1. Therefore f is a probability measure defined on the
Borel subsets of the ball Band

-'(G) = Y(G)
y y(B)

(GeB)

LEMMA 2A. If £5 E [exp( -mI2), 112] and Z E /Rm, then

f(XEB: I(x, z)1 ~c' liz II 2 J!ln 15-1)~15,

where c' is an absolute constant.

(16)
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Indeed from the fact that ]' is an invariant measure with respect to
orthogonal transposition, it follows that

Further, from the definitions of <5 and 0( we have

(17)

where C 1 = 4. From inequality (6) it follows that Yrn_I(B;-I(c 1 j;)) ~ C;j,

where c~ is an absolute constant. Hence using inequality (17) and the
definition of oe we have

Inequality (16) now follows.

COROLLARY I. Let 2:S q < 00 and oe > 0(0' For the linear (n, <5 )-widths of
the ball B, with measure }", in the space I; we have

where m ~ 2n and <5 E [0, n
The upper estimate in (18) follows directly from Theorem 4 and the

obvious inequality An, b(B, I;, l' ) :s j;. The lower estimate in (18) for
<5 ~ <5 0 , <5 0 = exp( - oem), repeats the proof of the lower estimate in
Theorem 4. However, we must use Lemma 2A rather than Lemma 2. Then
we have

(19)
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If b < bo, then from (19) we have

An. J(B, I;, f) ~ An, Jo(B, I;, f) ~ c.j;z.

From the inequalities (19) and (20) we obtain (18).

3. PROOF OF THEOREM 1

83

(20)

First we give a few auxiliary statements. Consider two sequences of
integers mo=O, mN=3 N- 1 and 10 =0, IN=L~=lmS' where N=I,2, ....
We decompose the integers 7L on blocks {AN}~=_co' where Ao= {O},
AN = {lN, .", IN + 1 - I } for N = I, 2, ..., and AN = - A _Nfor N = - I, - 2, "..
For negative N, set mN=m_ N, IN='-N' The cardinality of the block AN
equals m N •

For any number N we denote TN the space consisting of the
trigonometric series y(.) = LkELtN Ck exp(ik(.». We define on the space TN
the norm

IIYllq'N=Cto'ly(~:)lq)'/q·

From the Hardy-Littlewood inequality (see [21, Vol. 2, p. 4]) for any
1< q < 00 we have

(21)

In particular for q=2 we have the equality lIyIIL,=m NI
/
2 I1YII2,N' From

the Marcinkiewicz theorem (see [21]) we have

(22)

For every N we consider, in the space W;, the projection operator

x

P N : L Ckek--+ I Ckek'
k~ -co kELtN

LEMMA 3. Set

(23)

where c~ is some constant depending just on rand q. Then for any bE [0, D
we have

640/77/1-7
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Proof Since

from (22) and from the definition of Gaussian measure (2) we have

where

Recall that Ak = a \k\-s. By the substitution tklA --+ tk and equality (22)
we have

where f2![ = {y E IRmN
: IIL:;: 1 Ykek II L

q
~ C2 m :;"+ s/2}.

From (21) it follows that the set f2!1 is contained in the set

Since the matrix (ek(21T.ulmN)/~h.u=I...,mN is orthogonal, and finite­
dimensional Gaussian measure is invariant with respect to orthogonal
transposition in the space IRmN

, we have

(25)

where t7> _{YElRmN,("mN Iy Iq)l/q::;,C m r +(s-li/2 + 1/qa }
;;;C3 - , /-ok = 1 k ?' 3 N N. b '

Let c~ = COIC3' where Co is the constant from Lemma 1. Using the defini­
tion aN, b from Lemma 1, we obtain

From inequalities (24)-(26) we obtain Lemma 3,
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Proof of Theorem 1. We first prove the upper bound for linear (n, fJ)­
widths An,,,(W;,Lq,J.l). Denote e5 N=fJ·3(N'-INIl, N= ±N', ±(N'+l), ... ,
N' = [log n/2] (where [ ] is the integer part of number and log u = log3 u).
Consider the sequence of sets

GN= {XE W;: IIPNxIILq~ocN."N}'

Using Lemma 3 we estimate the measure of the set G = UINI:;. N' GN

J.l(G)~ L J.l(GN)~ I e5N~e5 L 3N'-INI~b.
INI:;.N' INI:;.N' INI:;.N'

m ~q + Jln fJ -; 1

" oc N, "N = c~ "L. L. mr+1/q+(s-1)/2
INI:;.N' INI:;.N' N

(27)

~ I 3-[r+ (S-1)/2 J1NI(l + 3 -INllq Jln fJ-; I)
INI:;.N'

~ 3-[r+(s-1)/2 JN'(1 +3-N'/q~)

l+n-l/q~
~ nr+(s-1l/2 . (28)

Consider the linear operator An = L.Z'~ -N' PN' From the inequalities
(27) and (28) we have for linear (n, b)-widths the estimate

An. ,,( W;, L q, r) ~ A( W; \G, An' L q)

~ sup II I PNxl1
XEW2\G INI:;.N' Lq

l+n-l/q~

~ L: rJ.N."N~ nr+(s-1)/2 .
INI:;.N'

We now prove the lower estimate. Let e be any prositive number. Denote
by An the linear operator of rank at most n, and by G" the set in W; with
measure J.l( G,,) ~ fJ such that

(29)

Consider the projection operator in the space L q given by
Qn: L.;o~ -oc; Ck e k -+ L.~n~+nl ckek · From the Marcinkewicz theorem we have
the inequality IIQnxllL ~CI Ilxil L for all xELq. Further, using (22) and theq q

definition of the Gaussian measure (2) we have
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J1.(XE w;: Ilx-AnxIILq?cllcxN,b)

? J1.( IIQn x - QnAnxl1 Lq? CX n,b)

=J1. ([~: (X, ek)(ek - QnAnek)t
q
? CX n,b)

? J1 (113:~nl (X, e~-,) I (Ck - QnAnek)11 L
q
? C2 n'CXn,b)

(
3n+1 1 )1/2 (1 3n +1 )

= }!n 2nA.
k

t exp -2k~n A.klyi dYn,·,dhn+l, (30)

~ = {Y = (Yn' ..., hn+ d E /R2n+ I : [~nl Yk(ek - QnAnedt
q
? c2n'cxn}.

With the help of the substitution tJji; -+ tk and equality (21), we
obtain

C~nl 2nA.k) -1/2 t exp ( -~ 3~ I A. k-
I Yk) dYn'" tZV3n+ I

? C00 2n) -1/2 t, exp ( -~ k~O Yi) dyo'" dYzn = Y2n+ d~d,

where

(31)

~I = {Y E /R2n + I: (~o Ik~O Yk [ek(O/) - (QnAnekHO/)]lqYlq ? C3n,+sl2+ I}
and 0/= 2nlj(2n + 1). Consider the two matrices

E=(~)k./~O...,2n

Then we can write

and

~I = {y E /R2n + I: IIEy - HYII q? C3 n'+ (s- 1)/2 + I/qcxn,b}

= rYE /R2n+ 1: IIEy- HYllq?C3c~(nl/q+~)}.

Since E is an orthogonal matrix and the finite-dimensional Gaussian
measure Y2n+ I is invariant with respect to orthogonal transposition in the
space /R2n + I, we have

(32)
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~2 = {y E 1R2,,+ I: IIY - HE -IYllq ~ c3c~(nl(q+ Jln b- I )}.

From the definition of the matrix H it follows that the rank of HE -I is at
most n. Therefore from Theorem 4, for some constant c~, we have
Y2,,+ 1(~2) > b. Further from (30)-(32) it follows that

J1(X E W;: Ilx- A"xlI Lq ~ CIIOC". b) ~Y2"+ 1(~2) > b.

Hence we obtain

Letting I: -+ 0 in inequality (29) we obtain the lower estimate. Theorem I is
proved.

The proof of Theorem 2 is analogous to the proof of Theorem 1. Indeed,
the upper estimate for the linear (n, b)-width follows from the inequality

l+n-l(q~
An,b(BW;, L q , J1')~A".b(W;, L q , J1)~ r+(5-1)/2

n

and from the known estimate for linear n-widths (see [3])

The proof of the lower estimate repeats the proof in Theorem 1. But
here, instead of Theorem 4 we use Corollary 1.

The proof of Theorem 3 repeats the proof of Theorem 1. But in the lower
estimate, instead of the operator A", we consider the zero operator.

We remark that an announcement about results on Kolmogorov
(n, b)-widths of the W; spaces with measure J1 in the Lq-norm appears in
Maiorov [10, 22]. There also appear analogous results for Wiener spaces.

REFERENCES

I. A. E. BusLAEv, About best approximation of random functions and functionals, in "Trud.
of Th'd Saratov Winter School," Vol. 2, pp. 14-17, Saratov University, 1988.

2. K. HOLLlG, Approximationszahlen von Sobolev-Einbettungen, dissertation, Bonn, 1979.
3. R. S. ISMAGILOV, Diameters of sets in nonned linear spaces and approximation of

functions with trigonometric polynomials, Uspekhi Mat. Nauk 29 (1974), 161-178,
4. J. P. KAHANE, Some random series of functions, in "Heath Math. Monograhps," Heath,

Lexington, 1968.
5. H. H. Kuo, Gaussian measures in Banach spaces, in "Lecture Notes in Mathematics,"

Vol. 463, Springer·Verlag, Berlin, 1975.



88 VITALY MAIOROV

6. V. E. MAIOROV, About linear widths of Sobolev classes, Dokl. Akad. Nauk UzSSR 243
(1978), 1127-1130.

7. V. E. MAIOROV, Discretisation of a problem about n-widths, Uspekhi Mat. Nauk 30
(1976),179-180.

8. V. E. MAIOROV, About linear diameters of Sobolev classes and chains of extremal sub­
spaces, Mat. Sb. 113 (1980), 437~63.

9. V. E. MAIOROV, "About Widths of Space, Equipped with a Measure," pp.91-105,
Yaroslav. State University, Yaroslavle, 1990.

10. V. E. MAIOROV, Widths of spaces, equipped with a Gaussian measure, Dok/. Akad. Nauk
UzSSR 323 (1992), 233-237.

11. P. MATHE, s-number in information-based complexity, J. Complexity 6 (1990), 41-{)6.
12. S. M. NIKOLSKI, "Approximation of the Many Variables Functions and Theorems of

Embedding," Nauka, Moscow, 1969.
13. A. PINKUS, "n-Widths in Approximation Theory," Springer-Verlag, Berlin, 1985.
14. G. PISIER, Probabilistic methods in the geometry of Banach spaces, in "Lecture Notes in

Mathematics," Vol. 1206, pp. 167-241, Springer, New York/Berlin, 1986.
15. G. E. SHILOV AND FAN DYK TIN, "Integral Measure and Derivative on Linear Spaces,"

Nauka, Moskow, 1967, [In Russian].
16. S. B. STECHKIN, About best approximation of the given function classes with any polyno­

mials, Uspekhi Mat. Nauk 9 (1954), 133-134.
17. V. M. TIKHOMIROV, "Some Problems in Approximation Theory," Moscow State

University, Moscow, 1976. [In Russian]
18. J. F. TRAUB AND H. WOZNIAKOWSKI, "A General Theory of Optimal Algorithm,"

Academic Press, New York, 1980.
19. J. F. TRAUB, G. W. WASILKOWSKI, AND H. WOZNIAKOWSKI, "Information-Based

Complexity," Academic Press, New York, 1988.
20. S. M. VORONIN AND N. TEMIRGALIEV, About some applications of Banach measure, Izv.

Akad. Nauk Kasakh. SSR Ser. Fiz.-Mat. 5 (1984), 8-11.
21. A. ZYGMUND, "Trigonometric Series," Vol. 2, Cambridge Univ. Press, London/New York,

1959. [In Russian]
22. V. E. MAIOROV, Kolmogorov (n,o)-widths of the spaces of the smooth functions,

Math. Sbornik 184 (1993), 49-70.


