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r

We calculate asymptotics for the linear (n, §)-widths of the Sobolev space W7
equipped with the Gaussian measure  in the L,. That is, we consider the quantity

Ans(Wh Ly uy= inf A (W3NG, Ly),
Ge Wy, pGy<é

where A,(K, X) is the linear n-width of the set K in the space X. € 1994 Academic

Press, Inc.

1. INTRODUCTION

Let X be a normed linear space and W a subset of X. Let A be a linear
operator from X to X. Let AW denote the image of W under A. The
quantity

AW, A, X)=sup lix— Ax| x

xeW

is called the linear distance of the image AW from the set W.
For each n=0, 1, ..., we consider the linear n-width of the set W in X. It
is defined by

AW, X)=iofinf (W, 4,, X),

Zn Ap

where %, runs over all the linear subspaces in X with dimension at most
n and A, runs over all linear operators from X to .%,.

We assume that the set W is equipped with a Borel field £, which
consists of the open subsets. Let x4 be a probability measure defined on 4.
That is, ¢ is a g-additive nonnegative function on # and u(W)=1.
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Let 6 [0, 1] be any given number. We define the linear (n, d)-width of
the set W in the space X for the measure p as follows. Set

;Ln‘é(W’ Xa ﬂ)=1gf/ln(W\GasX), (1)
8

where G; runs over all the subsets G;e€ # with measure u(G;)<4. The
quantity 4, ; may be understood as the p-distribution of the best linear
approximation on all subsets of W.

Detailed information about the usual linear widths may be found in
[17,13]. Papers connected with calculating the asymptotics of linear
n-widths include 3,6, 8, 2].

Quantities similar to (1) were considered in [19]. In the books of Traub
and Wozniakowski [18] and Traub et al. [19], a different problem con-
nected with the best approximation of the function classes, equipped with
measure in a Hilbert space, was investigated. Calculation of #n-widths of the
smooth function classes equipped with some given measure are included in
[20,9,1, 11].

Consider the Hilbert space L, of all functiohs x(), r€ [0, 2n], with the
Fourier series

x(t)= i C, explikt)

k=—0

and inner product
1 2n
oyy=g=[ x50 d (xyela).
T Yo

In the space L, we define the Veil r-fractional derivative (re R)

o0

xO(y= Y (k) c, exp(ikt) ((ik)’ = |k|" exp (% sign r>>

k= —oc

In this work we consider the Sobolev space W/ (r>0), which consists
of all functions xelL,, with mean value ¢;=0, and semi-norm
%l w;= {x", x’). The space W} is a Hilbert space with the inner
product defined by (x, y>,=<{x"", y">.

We equip W, with a Gaussian measure ¢ whose mean is zero and whose
correlation operator C, has eigenfunctions e, = exp(ik(-)) and eigenvalues
iy=alkl™ (a>0,5>1). That is, C e, = A,e;, ke Z\{0}.

In particular on the cylindrical subsets in th space W/ given by

G={xeW,:({(x,e"">, .. {x,e">)e2},
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where 2 is any Borel subset in R™~"*! (m>n), el™" = (ik) " exp(ik(-)),
k= =x1, £2,.., is an orthonormal system in W7, and the measure u(G) is
equal to

wG)= 1] (Zn/lk)*”zj. cxp(—% Y i,\?‘u,z() du, - du,,. (2)
k=—n Z k=n
Detailed information about Gaussian measures may be found in the
books of Kuo [5] and Traub ef al. [19].
Consider the Banach space L, 1 <g< oo, which consists of all function
x on [0, 2n] with norm

2n 1/y
i, = ([ xtorear)

It is known that if r>1/2—1/g, then the space W/ is compactly
embeddable in the space L, (see, e.g., [12]).

Let ¢, ¢;, ¢i, i=0, 1,... be positive constants depending solely upon the
parameter r, ¢, a, and 5. For two positive functions a(y) and b(y), y€ 2,
we write a( y) =< b(y) or a(y) < b(y) if there exist constants ¢, ¢,, or ¢ such
that ¢, <a(y)/b(y)<c, or respectively a(y) <cb(y) for all ye 2.

The aim of this paper is to calculate the asymptotics of the linear
(n, 6)-widths 4, ;(W7, L,, u). Note that the two-sided estimation for
An s(WY5, Ly, p) may be obtained from the work of Traub et al. [19].

THEOREM 1. Let 2<g<ao, r>12—1/q, s>1, a>0. The linear
(n, 8)-widths of W with measure y in the space L, satisfy the asymptotics

_l+n Y /Iné!

1 r
An,é(WZ’an “)" n,+(s_1)/2 ]

Sor any 5€(0, 1].

We denote the unit ball in W, by BW,={xe W}:|x|u;<1}. The
following inequality (see [19, p. 469]) holds for the measure of the unit ball

1
BW,)>1-5 -, 3
uBW?)> exp( T C#) (3)
where trace C,=2>;_ A =2a3;_,k " Therefore for all ael =
0, 4In5Z(s)~ '], Us)=¥ 7 ,k~* we have from (3) the inequality
u(BW5) =z c>0. We always assume ae /.
We define the conditional measure by

WG BWY)

(G)= G .
w(G) Z(BW7) (Ge®)
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We may view y’ as a probability measure defined on the sets O of the
field # ~ BW, and u'(Q) = u(Q)/ u(BW,).

THEOREM 2. Let 2€qg<o0, r>1/2—1/q, s>1, ael,. The following
asymptotic equivalence holds for the ball BW', with measure p' in the space
L

q°

1/q I
An,,s(BW;,L,,,u')Xmin{ 1 n%+ /s }

n- 1/2+1/q° (nr+(s7 1)/2 + 1/‘{)

for any §€(0, 51.

Note that for linear n-widths of the ball BW/ in the space L, we have
the equality (see [3])

1

-2+ 17

ABW?,, L)< (2<g< ) (4)

Comparing Theorem 2 and the asymptotics of (4) shows, in particular,
that if we throw out from the class BW/ some set G with measure
u'(G) <exp(—n%?), then we obtain on the remaining set BW,\G the
approximation order n~"~“~ 12 If s=1+2¢, where ¢ is an arbitrary
positive small number, then the approximation order is n~ "~ % which is
essentially smalier than (4).

Using Theorem 2 we obtain the asymptotic equivalence for the best
approximation on the class BW in the space L, by trigonometric polyno-
mials of degree .

Let 7, denote the space of trigonometric polynomials of degree n, i.e.,

y(t) = Z c. explike).

k= —n

Let the J-distance from the class BW", to 7, in the space L, for the
measure y' be defined by

E, s (BWy, L, w')= inf  sup inf [x—yl,,

{G:p(G)<d) xe BW\G ye

THEOREM 3. If the conditions of Theorem 2 hold, then

1 ey Sing 1
E,,,,;(BW;,Lq,y)xmin{n n_*y/on }

r—1/2+1/¢° nr+(s—l)/2+ 1/q
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For 6 =0, this result is known (see [12])

1

E.(BWY, Lq)xm- (5)

Comparing the asymptotics (5) and Theorem 3 shows, in particular,
that on the set BW,\G, where G is some set of BW' measure
W(G)<exp(n~%), we can obtain an approximation order essentially
smaller than (5).

The proofs of Theorems 1-3 use discretisation techniques (see [7]). This
method is based on the reduction of the caculation of the widths of a given
class, to the calculation of widths of finite-dimensional set equipped with
the Gaussian measure.

2. THE ESTIMATION OF LINEAR (n, 6)-WIDTHS OF
FINITE-DIMENSIONAL SETS

In this section we calculate the linear (n, 6)-widths in the space R™
equipped with the Gaussian measure in the /7-norm.

Let /7' denote the m-dimensional normed space consisting of vectors
x=(X, .., X,,,) € R™ with norm

i=1

m 1/p
(zlev’) . l<p<w
Il =

max |x;|, p= 0.
l<ism
Let B)(p)={xel}:||x[,<p} be the ball of radius p in /). Set B} =
B(1).
In the space R™ we consider the Gaussian measure y=1y,,, which is
defined as

m

#G)= )2 [ exp( =4 § x7) v, -
G i=1
where G is any Borel set in R™. Obviously, y(R™)=1. We use the following
measure estimates for balls (see, e.g., [19]). Namely,

2
WBI e Jm) <t §(BY(p)>1—Sexp (—5’;) (6)

where ¢ is an absolute constant, and p any positive number.
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Consider the linear (n, 4)-widths, with measure, in the / 7-norm, namely

An s(R™ 17, 7)=infinf sup [x—4,x|,.

Gs Ap xe R™\G;
where G, runs over all Borel sets in R™ with measure y(G;s) <9, 4, runs
over all linear operators on R™ with rank at most n, and € [0, 1].

THEOREM 4. Let 2<g< o, m=22n>0, and 6€(0,1/2]. Then

A s(R™ 17, y)=xm"e 4 /Ind 1.
We first prove two auxiliary lemmas. We use some known estimations.
Namely, if u> 1/,/2, then (see [15])

* 2 1 2 2 2 1 2
e Tdi<—e™ ¥, — | e "di€l ——=e ", (7)
J‘u 21,( \/E ’(0 2 \/_7;
LEMMA 1. Let 2<g< o and d€ [0, ). For some constant c, depending
only on g, we have

PxeR™ |[x|, = colm"+ . /Ind~ 1)} <4. (8)

Proof. Let f(x)=|x|l,. Then |f(x)—f(»)|<lx—»l,; hence f is a
Lipschitz map on R™ with Lipschitz constant ¢ = 1. By the Maurey-Pisier
inequality, see [14], we have for all >0,

7(f — Ef 2 1) <exp(—t°/20) = exp(—1?/2). 9)

But by Kahane’s inequality, see [4], E, < (Ef?)"? < q'?m"4. Therefore for
some absolute constant ¢ > 0.

W= 1+ cq"Pm ) <exp(—12/2), (10)

and taking = (In 6 ~')""? completes the proof.
LEMMA 2. Let 6€[0,e']. For any vector ze R™, we have
P 1(x, 2) 2 ¢ izl 2 /I 677) = 6,
where (-, ) is the standard inner product, and cy an absolute constant.

Proof. Since 7 is an invariant measure with respect to orthogonal trans-
formation in the space R™, it suffices to prove the lemma for the vector
z*=(|lzl,, 0, ..., 0). Using inequality (7) we have

é

e 1 )| 3 0, S ) 35 [

The lemma now follows.
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Proof of Theorem 4. We first prove the upper bound for the linear
(n, 6)-widths. Consider the set in R™:

Qs={xeR™ |x|,=co(m+/In 6" ")}.

From Lemma 1 we have the estimation y(Q;) < d. Therefore

Rus= A sR™ 17,9 sup  xl < colm™ +/Ind ).

xe R"\Qs

To prove the lower bound, let ¢ be any positive number. We define a linear
operator T with rank at most » and a set G < R™ with measure y(G) <4,
for which

Apsz sup |lx—Tx||, —e (11)
xeR™"G

We can describe the operator T by
Ix= Z (%, U )i (xeR™),
k=1
where u,, v, are vectors in R”. We have for 1/g+ /g’ =1

Jx = Txl, = ma (x— T, ) =max (3= 3 (v ou)us, %)
yeBy y

q k=1

2 max s (12)

I<ism

(ei_ i (e, vy )uy, x)
k=1

where ¢; is the ith unit vector. Let z,=e,— 3.7 _, (e;, v, )u,. Consider the
set

H=\) H,, H,={xeR™|(x,z))| 2cy/5Ind'},

We know (see [16]) that for any vectors u,, vy, k=1, .., n, there exists an
index i, such that ||z, |, > l/ﬁ. Therefore from Lemma 2

YH) 2 y(Hy) Z9(x: (x, 2)l 2 ¢6 [z, ]l /In 671 >4, (13)
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From inequalities (12) and (13) and since y(G) <, we have

sup fix—Txll,=co/3In 67"

xeR™G
From here and inequality (11), letting ¢ - 0, we obtain

dps>co/Tiné L (14)

We obtain one more lower estimate for 4, ;. Using Holder’s inequality we
have

Ay szma120 (R IT, y)=m"4 V2 inf sup p(x),
G:y(G)<d xe R™\G

where p(x)= (X7 ," x})"/%. From inequality (6) it follows that

Yp(x)2 e /m)y=7,_(R™\BF "(c/m—n)) >4

Therefore, for any 6 < 1 using m > 2n, we obtain

A, s=mYa V2 \/_l_n>f (15)
From inequalities (14) and (15) we obtain the lower estimate for 4, s, and
Theorem 4 is proved.
Consider in the space R™ the Gaussian measures with parameter « given by
o \"? o
)3=~,7,,,=<£> jcexp(—ziz:]xf)dxl-~---dx,,,.
Set B= B’z"(\/r;). From inequality (6) for a >a,=1+21In 10 we have
7B) =3

Define on R™ the conditional measure concentrated on the ball B, ie.,
(G~ B)

7(B)
Obviously 7'(B)= 1. Therefore 7’ is a probability measure defined on the
Borel subsets of the ball B and

7(G)= (G < R™).

76)

g 0P

7'(G)=

LemMMa 2A. If de [exp(—m/2), 1/2] and z € R™, then
FlxeB:|(x, 2) = |z, /3In 87 1) 24, (16)

where ¢’ is an absolute constant.
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Indeed from the fact that ' is an invariant measure with respect to
orthogonal transposition, it follows that

g=7(xeR™ |(x, 2)| = lzl, /In 6, x|, < /m)

o\ um )
—(2/2)
27[ Ing~!

~

exp (—%(x%-l— +xf,,)> dx,---dx,,,.

A
B'2n7 I(\/ m r.\'fj
Further, from the definitions of 4 and « we have

m/2 1/2 Iné- 2
2 (&) T i
In (5

v

xj exp(—z(x§+~-~+xf,,)>dx2---dvc
BT W(Vm—32InsY) 2
20 34 - .
> [0, (BY T (e /m)), (17)

where ¢, = 1. From inequality (6) it follows that 7,,_,(B% ~(c, \/t;))z o
where ¢ is an absolute constant. Hence using inequality (17) and the
definition of « we have

— 3 |
F(xe B |(x,2) >zl /Ind ") >g> /;“ ¢ 8% > 0,67

Inequality {16) now follows.

COROLLARY 1. Let 2< g < oo and o> a,. For the linear (n, é)-widths of
the ball B, with measure 7', in the space | v we have

Ap s(B 17, 7)< min{/m, o 2(m" 4+ JInd )}, (18)

where m >2n and § € [0, 3].

The upper estimate in (18) follows directly from Theorem 4 and the
obvious inequality A, ;(B, 1;",}7')<\/;. The lower estimate in (18) for
6208, Oy=exp(—am), repeats the proof of the lower estimate in
Theorem 4. However, we must use Lemma 2A rather than Lemma 2. Then
we have

An o(B 17, 7' )2 ca ™ P (m" + /In 5~ "), (19)
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If 6 <d,, then from (19) we have
D s(BL LT T2 A BT, T2 0/ (20)
From the inequalities (19) and (20) we obtain (18).

3. PrROOF OF THEOREM 1

First we give a few auxiliary statements. Consider two sequences of
integers mo=0, my=3""" and 1,=0, Iy=Y1_, m,, where N=1,2, ...
We decompose the integers Z on blocks {A,}%_ _ ., where 4,={0},
Av={ly, iy —1}for N=1,2, . ,and dy=—4_yfor N=~1, =2, ..
For negative N, set my=m_,, [y =1_,. The cardinality of the block 4,
equals .

For any number N we denote T, the space consisting of the
trigonometric series y(-)=2,_,, ¢« €xp(ik(-)). We define on the space Ty

the norm
2rs\ |9\ 4
)
my
From the Hardy-Littlewood inequality (see [21, Vol. 2, p.4]) for any
1 <g < oc we have

”y“q,N:(mfl

s=0

Iyl =<my"lyl, v (yeTN) (21)

In particular for g=2 we have the equality |yll,,=my"? | y|, . From
the Marcinkiewicz theorem (see [21]) we have

Iy @h,=<m*lyl, (yeTy, xeR). (22)

For every N we consider, in the space W/, the projection operator

ac

PN: Z Cper— Z Cr€p. (23)

k= —oc kedy

LEMMA 3. Set

colmy?+/Ind ")

Ay, s = g G172
N

where ¢;, is some constant depending just on r and q. Then for any é¢€ [0, 1]
we have

wxe Wit|Pyxj,, Zoy s)<0.

640/77:1-7
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Proof. Since

Pyx= Z {x, e e, = Z <x(*’),€§f’)>1'ek,

kedy kedy

from (22) and from the definition of Gaussian measure (2) we have

pu=plx: ”PNx||L,,?“N,6)<#( Z {x,ei77), e >Clm;va>

kedn Lq

Ivyr1—1 —1/2 Ivypr—1

2( H 27[/1") J‘ exp(—-% Z }‘I:lyk)dybv”'dyhvn—l’
k=1Iy Z k=In
where

INy1—1

= {()’ms s Yiyo1—1) €RTY Z Yierl| Zemiyay 5}-
=1y Lq

Recall that A, =a |k| . By the substitution tk/\/j.; — t, and equality (22)
we have

my
p<@m e[ exp(—% 5. yk) dyy -y =1l D),  (24)
1 k=1

where 2, = {y e R™: [£7% | yeerll,, = comyt 72},
From (21) it follows that the set 2, is contained in the set

2ru\ |9\ /9
Z }’kek( >c, mr+a/2+1/qa

k=1

@2={y€ R"W:(Z

w=1

Since the matrix (e (2nu/my)/\/Mn)s, u=1,..m, is orthogonal, and finite-
dimensional Gaussian measure is invariant with respect to orthogonal
transposition in the space R™, we have

Vi 21) SVl D2) = Vmp(Z3),s (25)
where 2= {y e R™: (X711 yi|) 02 cami 12+ a4},

Let cg=co/c3, where ¢ is the constant from Lemma 1. Using the defini-
tion ay s from Lemma 1, we obtain

T (D) =V (P ER™: Y, 2 co(my? + /In 8~ 1)) <. (26)

From inequalities (24)-(26) we obtain Lemma 3.
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Proof of Theorem 1. We first prove the upper bound for linear (n, )-
widths 4, ;(W?%, L,, u). Denote 6, =63V "M N= 4t N’ +(N'+1), ...,
N'=[logn/2] (where [ ] is the integer part of number and log u =log u).
Consider the sequence of sets

Gy= {xe &% I]PNXHL,,>“N,5N}~

Using Lemma 3 we estimate the measure of the set G={J,y,5 »-G»

wGYS Y, wGy)< Y, Sy<é Y 3V IN«4 (27)

INT= N IN[= N’ INI 2N’

Since m, =3, we have

Y Ansy=C 3. mytty/indy
+ ON

r+1/g+(s—1)/2

INZ N iz TN
< Z 37[r+(s41)/2]|N|(1+3"N'/"\ﬂa—5?)
IN| =N’

<3~ lrrG=DR2IN(] 4 3-N/q \/IF)
—1/q -1
<1+rz JIné . (28)

nr+(s— 1y/2

Consider the linear operator 4,=3%__,. Py. From the inequalities
(27) and (28) we have for linear (n, §)-widths the estimate

'{n.é( W;a qu ‘}}) S2‘( W;\G’ An’ Lq)

< sup Y Pyx
xeWpPG N =N Ly
1+n=" /Iné~!
< Y oans < PYENCENY) .
IN| =N’

We now prove the lower estimate. Let & be any prositive number. Denote
by A, the linear operator of rank at most n, and by G; the set in W with
measure u(G;) <6 such that

dn (W5 Ly )2 MAWNGs, 4,, L) —e. (29)

Consider the projection operator in the space L, given by
0. XF . cker > 2! cre,. From the Marcinkewicz theorem we have
the inequality [|Q, x|l < ¢ lIx],, for all xe L,. Further, using (22) and the
definition of the Gaussian measure (2) we have
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u(xe Wi llx—A,xl L, = e an )

2I‘l(”an— QnAnxlqu Zan,é)

n+1
=.u'< Z <xaek>(ek—QnAnek) Zan,tS)
k=n L,
3n+1
>H( Z (x, el (e — Qa4 ey) 302”'%‘5)
k=n L,
In+1 1 1/2 In+1 5
= —_= At dy,---d 30
(kf_lnhik) Lem( 2;;::,, h yk> Yoo dyansy,  (30)
where
3n+1
9=:{y=(yn""a y3n+l)ER2n+1: Z yk(ek—QnAnek) 202’1’“"}'
k=n Lg

With the help of the substitution ¢,/./4, —t, and equality (21), we
obtain

3n+ 1 - 1/2 3In+1
( H 27'(}./(> J exp(——% Z Aklyk> dyn"'d_V3n+l
k=n @ n

2n —1/2 2n
Z(H 27[) J:@ exp<_% Z yi>dy0"'dy2n=’y2n+l(gl)’ (31)
) 0

k=0 k=
where
2n

91={yeR2"“:(Z

=0

2n

Z Vile8,)—(Q,1,e,)(0,)]

q\ l/q
> >C3nr+.\‘/2+l}
-
k=0

and 0,=2n//(2n + 1). Consider the two matrices

E=< ex(0)) ) and H=<QnAnek(61)) .
J2n+ 1/ k=0 ., 2n J2n+2 Jki=o0...2n

Then we can write
2, ={yeR"* " |Ey—Hy|,Zc;n G-+ Vg 1
={yeR™ " |Ey— Hyll, 2 c;co(n"+ /Ind " 1)}

Since E is an orthogonal matrix and the finite-dimensional Gaussian
measure y,,, ; is invariant with respect to orthogonal transposition in the
space R**! we have

?2n+l(@l)=‘yz"+l(@2)s (32)
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where
D= {yeR*" " |y~ HE " 'yll,> csc5(n"+/In 6~ ")},

From the definition of the matrix H it follows that the rank of HE ~ is at
most n. Therefore from Theorem 4, for some constant c¢;, we have
Van+ 1(%2,) > 8. Further from (30)-(32) it follows that

Il(xe WE‘ "x—Anx”Lq>C;lan,é)z))ln+l(92)>5'
Hence we obtain
A(W;\Gé’ An’ Lq)zcl—lan,é-

Letting ¢ — 0 in inequality (29) we obtain the lower estimate. Theorem 1 is
proved.

The proof of Theorem 2 is analogous to the proof of Theorem 1. Indeed,
the upper estimate for the linear (n, §)-width follows from the inequality

q , l+n " /lns—!
'tn.é(BWaa Lq’ ll )gln,é(W;’ Lq, li)<

nr+(s—l)/2

and from the known estimate for linear n-widths (see [3])
Dn, s(BW, Ly ') Ay o BWS, Ly, p') €n=" 412718,

The proof of the lower estimate repeats the proof in Theorem 1. But
here, instead of Theorem 4 we use Corollary 1.

The proof of Theorem 3 repeats the proof of Theorem 1. But in the lower
estimate, instead of the operator 4,, we consider the zero operator.

We remark that an announcement about results on Kolmogorov
(n, 0)-widths of the W7 spaces with measure p in the L -norm appears in
Maiorov [10, 227]. There also appear analogous results for Wiener spaces.

REFERENCES

1. A. E. BUSLAEV, About best approximation of random functions and functionals, in “Trud.
of Th'd Saratov Winter School,” Vol. 2, pp. 14-17, Saratov University, 1988.

2. K. HoLuiG, Approximationszahlen von Sobolev-Einbettungen, dissertation, Bonn, 1979.

3. R. S. IsmacGiLov, Diameters of sets in normed linear spaces and approximation of
functions with trigonometric polynomials, Uspekhi Mat. Nauk 29 (1974), 161-178.

4. J. P. KAHANE, Some random series of functions, in “Heath Math. Monograhps,” Heath,
Lexington, 1968.

5. H. H. Kuo, Gaussian measures in Banach spaces, in “Lecture Notes in Mathematics,”
Vol. 463, Springer-Verlag, Berlin, 1975.



88

6.
7.
8.
9.
10.

11.
12.

13.
14.

15.
16.
17.
18.
19.
20.
21.

22.

VITALY MAIOROV

V. E. MaIlorov, About linear widths of Sobolev classes, Dokl. Akad. Nauk UzSSR 243
(1978), 1127-1130.

V. E. Maiorov, Discretisation of a problem about n-widths, Uspekhi Mat. Nauk 30
(1976), 179-180.

V. E. MaIlorov, About linear diameters of Sobolev classes and chains of extremal sub-
spaces, Mar. Sh. 113 (1980), 437463.

V. E. Maiorov, “About Widths of Space, Equipped with a Measure,” pp. 91-105,
Yaroslav. State University, Yaroslavle, 1990.

V. E. Maiorov, Widths of spaces, equipped with a Gaussian measure, Dok/. Akad. Nauk
UzSSR 323 (1992), 233-237.

P. MATHE, s-number in information-based complexity, J. Complexity 6 (1990), 41-66.

S. M. Nikoiski, “Approximation of the Many Variables Functions and Theorems of
Embedding,” Nauka, Moscow, 1969.

A. PINkuS, “n-Widths in Approximation Theory,” Springer-Verlag, Berlin, 1985.

G. PisiER, Probabilistic methods in the geometry of Banach spaces, in “Lecture Notes in
Mathematics,” Vol. 1206, pp. 167-241, Springer, New York/Berlin, 1986.

G. E. SHILov AND FaN Dyk TiN, “Integral Measure and Derivative on Linear Spaces.”
Nauka, Moskow, 1967, [In Russian].

S. B. STECHKIN, About best approximation of the given function classes with any polyno-
mials, Uspekhi Mat. Nauk 9 (1954), 133-134.

V. M. TIKHOMIROV, “Some Problems in Approximation Theory,” Moscow State
University, Moscow, 1976. [In Russian]

J. F. TrauB anD H. WoznNiakowskl, “A General Theory of Optimal Algorithm,”
Academic Press, New York, 1980.

J. F. Traus, G. W. Wasukowski, anp H. Wozniakowski, “Information-Based
Complexity,” Academic Press, New York, 1988.

S. M. VOrRONIN AND N. TEMIRGALIEV, About some applications of Banach measure, /zv.
Akad. Nauk Kasakh. SSR Ser. Fiz.-Mat. 5 (1984), 8-11.

A. ZYGMUND, “Trigonometric Series,” Vol. 2, Cambridge Univ. Press, London/New York,
1959. [In Russian]

V. E. Maorov, Kolmogorov (n, )-widths of the spaces of the smooth functions,
Math. Sbornik 184 (1993), 49-70.



