Linear Widths of Function Spaces Equipped with the Gaussian Measure

Vitaly Maiorov
c/o Allan Pinkus, Technion, Department of Mathematics, Haifa 32000, Israel
Communicated by Allan Pinkus

Received November 20, 1991; accepted in revised form November 20, 1992

$$
\begin{aligned}
& \text { We calculate asymptotics for the linear }(n, \delta) \text {-widths of the Sobolev space } W_{2}^{r} \\
& \text { equipped with the Gaussian measure } \mu \text { in the } L_{q} \text {. That is, we consider the quantity } \\
& \qquad \lambda_{n, \delta}\left(W_{2}^{r}, L_{q}, \mu\right)=\inf _{G \in W_{2}^{\prime}, \mu(G) \leqslant \delta} \lambda_{n}\left(W_{2}^{r} \backslash G, L_{q}\right) \text {, } \\
& \text { where } \lambda_{n}(K, X) \text { is the linear } n \text {-width of the set } K \text { in the space } X \text {. © } 1994 \text { Academic } \\
& \text { Press, Inc. }
\end{aligned}
$$

1. Introduction

Let X be a normed linear space and W a subset of X. Let A be a linear operator from X to X. Let $A W$ denote the image of W under A. The quantity

$$
\lambda(W, \Lambda, X)=\sup _{x \in W}\|x-\Lambda x\|_{X}
$$

is called the linear distance of the image $A W$ from the set W.
For each $n=0,1, \ldots$, we consider the linear n-width of the set W in X. It is defined by

$$
\lambda_{n}(W, X)=\inf _{\mathscr{L}_{n}} \inf _{\Lambda_{n}} \lambda\left(W, \Lambda_{n}, X\right),
$$

where \mathscr{L}_{n} runs over all the linear subspaces in X with dimension at most n and A_{n} runs over all linear operators from X to \mathscr{L}_{n}.

We assume that the set W is equipped with a Borel field \mathscr{B}, which consists of the open subsets. Let μ be a probability measure defined on \mathscr{B}. That is, μ is a σ-additive nonnegative function on \mathscr{B} and $\mu(W)=1$.

Let $\delta \in[0,1]$ be any given number. We define the linear (n, δ)-width of the set W in the space X for the measure μ as follows. Set

$$
\begin{equation*}
\lambda_{n, \delta}(W, X, \mu)=\inf _{G_{\delta}} \lambda_{n}\left(W \backslash G_{\delta}, X\right), \tag{1}
\end{equation*}
$$

where G_{δ} runs over all the subsets $G_{\delta} \in \mathscr{B}$ with measure $\mu\left(G_{\delta}\right) \leqslant \delta$. The quantity $\lambda_{n, \delta}$ may be understood as the μ-distribution of the best linear approximation on all subsets of W.

Detailed information about the usual linear widths may be found in [17, 13]. Papers connected with calculating the asymptotics of linear n-widths include $[3,6,8,2]$.

Quantities similar to (1) were considered in [19]. In the books of Traub and Wozniakowski [18] and Traub et al. [19], a different problem connected with the best approximation of the function classes, equipped with measure in a Hilbert space, was investigated. Calculation of n-widths of the smooth function classes equipped with some given measure are included in [20, 9, 1, 11].

Consider the Hilbert space L_{2} of all functions $x(t), t \in[0,2 \pi]$, with the Fourier series

$$
x(t)=\sum_{k=-\infty}^{\infty} C_{k} \exp (i k t)
$$

and inner product

$$
\langle x, y\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t) \bar{y}(t) d t \quad\left(x, y \in L_{2}\right) .
$$

In the space L_{2} we define the Veil r-fractional derivative ($r \in \mathbb{R}$)

$$
x^{(r)}(t)=\sum_{k=-\infty}^{\infty}(i k)^{r} c_{k} \exp (i k t) \quad\left((i k)^{r}=|k|^{r} \exp \left(\frac{\pi i}{2} \operatorname{sign} r\right)\right)
$$

In this work we consider the Sobolev space $W_{2}^{r}(r>0)$, which consists of all functions $x \in L_{2}$, with mean value $c_{0}=0$, and semi-norm $\|x\|_{w_{2}^{\prime}}=\left\langle x^{(r)}, x^{(r)}\right\rangle$. The space W_{2}^{r} is a Hilbert space with the inner product defined by $\langle x, y\rangle_{1}=\left\langle x^{(r)}, y^{(r)}\right\rangle$.

We equip W_{2}^{r} with a Gaussian measure μ whose mean is zero and whose correlation operator C_{μ} has eigenfunctions $e_{k}=\exp (i k(\cdot))$ and eigenvalues $i_{k}=a|k|^{-s}(a>0, s>1)$. That is, $C_{\mu} e_{k}=\lambda_{k} e_{k}, k \in \mathbb{Z} \backslash\{0\}$.

In particular on the cylindrical subsets in th space W_{2}^{r} given by

$$
G=\left\{x \in W_{2}^{r}:\left(\left\langle x, e_{n}^{(-r)}\right\rangle_{1}, \ldots,\left\langle x, e_{m}^{(-r)}\right\rangle_{1}\right) \in \mathscr{D}\right\}
$$

where \mathscr{D} is any Borel subset in $\mathbb{R}^{m-n+1}(m>n), e_{k}^{(-r)}=(i k)^{-r} \exp (i k(\cdot))$, $k= \pm 1, \pm 2, \ldots$, is an orthonormal system in W_{2}^{r}, and the measure $\mu(G)$ is equal to

$$
\begin{equation*}
\mu(G)=\prod_{k=-n}^{m}\left(2 \pi \lambda_{k}\right)^{-1 / 2} \int_{\mathscr{O}} \exp \left(-\frac{1}{2} \sum_{k=n}^{m} \lambda_{k}^{-1} u_{k}^{2}\right) d u_{n} \cdots d u_{m} \tag{2}
\end{equation*}
$$

Detailed information about Gaussian measures may be found in the books of Kuo [5] and Traub et al. [19].

Consider the Banach space $L_{\varphi}, 1 \leqslant q \leqslant \infty$, which consists of all function x on $[0,2 \pi]$ with norm

$$
\|x\|_{L_{q}}=\left(\int_{0}^{2 \pi}|x(t)|^{q} d t\right)^{1 / q}
$$

It is known that if $r>1 / 2-1 / q$, then the space W_{2}^{r} is compactly embeddable in the space L_{4} (see, e.g., [12]).

Let $c, c_{i}, c_{i}^{\prime}, i=0,1, \ldots$ be positive constants depending solely upon the parameter r, q, a, and s. For two positive functions $a(y)$ and $b(y), y \in \mathscr{D}$, we write $a(y) \asymp b(y)$ or $a(y) \ll b(y)$ if there exist constants c_{1}, c_{2}, or c such that $c_{1} \leqslant a(y) / b(y) \leqslant c_{2}$ or respectively $a(y) \leqslant c b(y)$ for all $y \in \mathscr{D}$.

The aim of this paper is to calculate the asymptotics of the linear (n, δ)-widths $\lambda_{n, \delta}\left(W_{2}^{r}, L_{q}, \mu\right)$. Note that the two-sided estimation for $\hat{\lambda}_{n, \delta}\left(W_{2}^{r}, L_{2}, \mu\right)$ may be obtained from the work of Traub et al. [19].

Theorem 1. Let $2 \leqslant q<\infty, r>1 / 2-1 / q, s>1, a>0$. The linear (n, δ)-widths of W_{2}^{r} with measure μ in the space L_{q} satisfy the asymptotics

$$
\lambda_{n, \delta}\left(W_{2}^{r}, L_{q}, \mu\right) \asymp \frac{1+n^{-1 / q} \sqrt{\ln \delta^{-1}}}{n^{r+(s-1) / 2}},
$$

for any $\delta \in\left(0, \frac{1}{2}\right]$.
We denote the unit ball in W_{2}^{r} by $B W_{2}^{r}=\left\{x \in W_{2}^{r}:\|x\|_{W_{2}^{\prime}} \leqslant 1\right\}$. The following inequality (see [19, p. 469]) holds for the measure of the unit ball

$$
\begin{equation*}
\mu\left(B W_{2}^{\prime}\right)>1-5 \exp \left(-\frac{1}{2 \operatorname{trace} C_{\mu}}\right) \tag{3}
\end{equation*}
$$

where trace $C_{\mu}=\sum_{k=-\infty}^{\infty} \lambda_{k}=2 a \sum_{k=1}^{\infty} k^{-s}$. Therefore for all $a \in I_{s} \equiv$ ($0,\left(4 \ln 5 \zeta(s)^{-1}\right], \quad \zeta(s)=\sum_{k=1}^{\infty} k^{-s}$ we have from (3) the inequality $\mu\left(B W_{2}^{r}\right) \geqslant c>0$. We always assume $a \in I_{s}$.

We define the conditional measure by

$$
\mu^{\prime}(G)=\frac{\mu\left(G \cap B W_{2}^{r}\right)}{\mu\left(B W_{2}^{r}\right)} \quad(G \in \mathscr{B})
$$

We may view μ^{\prime} as a probability measure defined on the sets Q of the field $\mathscr{B} \cap B W_{2}^{r}$ and $\mu^{\prime}(Q)=\mu(Q) / \mu\left(B W_{2}\right)$.

Theorem 2. Let $2 \leqslant q<\infty, r>1 / 2-1 / q, s>1, a \in I_{s}$. The following asymptotic equivalence holds for the ball $B W_{2}^{r}$ with measure μ^{\prime} in the space L_{q},

$$
\lambda_{n, \delta}\left(B W_{2}^{r}, L_{q}, \mu^{\prime}\right) \asymp \min \left\{\frac{1}{n^{r-1 / 2+1 / q}}, \frac{n^{1 / q}+\sqrt{\ln \delta^{-1}}}{\left(n^{r+(s-1 / 2+1 / q}\right)}\right\}
$$

for any $\delta \in\left(0, \frac{1}{2}\right]$.
Note that for linear n-widths of the ball $B W_{2}^{r}$ in the space L_{q} we have the equality (see [3])

$$
\begin{equation*}
\lambda_{n}\left(B W_{2}^{r}, L_{q}\right) \asymp \frac{1}{n^{r-1 / 2}+1 / q} \quad(2 \leqslant q \leqslant \infty) . \tag{4}
\end{equation*}
$$

Comparing Theorem 2 and the asymptotics of (4) shows, in particular, that if we throw out from the class $B W_{2}^{\prime}$ some set G with measure $\mu^{\prime}(G) \leqslant \exp \left(-n^{2 / q}\right)$, then we obtain on the remaining set $B W_{2}^{\prime} \backslash G$ the approximation order $n^{-r-(s-1) / 2}$. If $s=1+2 \varepsilon$, where ε is an arbitrary positive small number, then the approximation order is $n^{-r-\varepsilon}$, which is essentially smaller than (4).

Using Theorem 2 we obtain the asymptotic equivalence for the best approximation on the class $B W_{2}^{r}$ in the space L_{q} by trigonometric polynomials of degree n.
Let \mathscr{T}_{n} denote the space of trigonometric polynomials of degree n, i.e.,

$$
y(t)=\sum_{k=-n}^{n} c_{k} \exp (i k t) .
$$

Let the δ-distance from the class $B W_{2}^{r}$ to \mathscr{T}_{n} in the space L_{q} for the measure μ^{\prime} be defined by

$$
E_{n, \delta}\left(B W_{2}^{r}, L_{q}, \mu^{\prime}\right)=\inf _{\left\{G: \mu^{\prime}(G) \leqslant \delta\right\}} \sup _{x \in B W_{2}^{\prime} \backslash G} \inf _{y \in \mathscr{S}_{n}}\|x-y\|_{L_{q}} .
$$

Theorem 3. If the conditions of Theorem 2 hold, then

$$
E_{n, \delta}\left(B W_{2}^{r}, L_{q}, \mu\right) \asymp \min \left\{\frac{1}{n^{r-1 / 2+1 / q}}, \frac{n^{1 / q}+\sqrt{\ln \delta^{-1}}}{n^{r+(s-1) / 2+1 / q}}\right\} .
$$

For $\delta=0$, this result is known (see [12])

$$
\begin{equation*}
E_{n}\left(B W_{2}^{r}, L_{q}\right) \asymp \frac{1}{n^{r-1 / 2+1 / q}} \tag{5}
\end{equation*}
$$

Comparing the asymptotics (5) and Theorem 3 shows, in particular, that on the set $B W_{2}^{r} \backslash G$, where G is some set of $B W_{2}^{r}$ measure $\mu^{\prime}(G) \leqslant \exp \left(n^{-2 / q}\right)$, we can obtain an approximation order essentially smaller than (5).

The proofs of Theorems 1-3 use discretisation techniques (see [7]). This method is based on the reduction of the caculation of the widths of a given class, to the calculation of widths of finite-dimensional set equipped with the Gaussian measure.

2. The Estimation of Linear (n, δ)-Widths of Finite-Dimensional Sets

In this section we calculate the linear (n, δ)-widths in the space \mathbb{R}^{m} equipped with the Gaussian measure in the l_{q}^{m}-norm.

Let l_{p}^{m} denote the m-dimensional normed space consisting of vectors $x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$ with norm

$$
\|x\|_{p}= \begin{cases}\left(\sum_{i=1}^{m}\left|x_{i}\right|^{p}\right)^{1 / p}, & 1 \leqslant p<\infty \\ \max _{1 \leqslant i \leqslant m}\left|x_{i}\right|, & p=\infty .\end{cases}
$$

Let $B_{p}^{m}(\rho)=\left\{x \in l_{p}^{m}:\|x\|_{p} \leqslant \rho\right\}$ be the ball of radius ρ in l_{p}^{m}. Set $B_{p}^{m}=$ $B_{p}^{m}(1)$.

In the space \mathbb{R}^{m} we consider the Gaussian measure $\gamma=\gamma_{m}$, which is defined as

$$
\gamma(G)=(2 \pi)^{-m / 2} \int_{G} \exp \left(-\frac{1}{2} \sum_{i=1}^{m} x_{i}^{2}\right) d x_{1} \cdots d x_{m}
$$

where G is any Borel set in \mathbb{R}^{m}. Obviously, $\gamma\left(\mathbb{R}^{m}\right)=1$. We use the following measure estimates for balls (see, e.g., [19]). Namely,

$$
\begin{equation*}
\gamma\left(B_{2}^{m}(c \sqrt{m})\right) \leqslant \frac{1}{2}, \quad \gamma\left(B_{2}^{m}(\rho)\right) \geqslant 1-5 \exp \left(-\frac{\rho^{2}}{2 m}\right) \tag{6}
\end{equation*}
$$

where c is an absolute constant, and ρ any positive number.

Consider the linear (n, δ)-widths, with measure, in the l_{q}^{m}-norm, namely

$$
\lambda_{n, \delta}\left(\mathbb{R}^{m}, l_{q}^{m}, \gamma\right)=\inf _{G_{\delta}} \inf _{A_{n}} \sup _{x \in \mathbb{R}^{m} \backslash G_{\delta}}\left\|x-A_{n} x\right\|_{q} .
$$

where G_{δ} runs over all Borel sets in \mathbb{R}^{m} with measure $\gamma\left(G_{\delta}\right) \leqslant \delta, \Lambda_{n}$ runs over all linear operators on \mathbb{R}^{m} with rank at most n, and $\delta \in[0,1]$.

Theorem 4. Let $2 \leqslant q<\infty, m \geqslant 2 n>0$, and $\delta \in(0,1 / 2]$. Then

$$
\lambda_{n, \delta}\left(\mathbb{R}^{m}, l_{q}^{m}, \gamma\right) \asymp m^{1 / q}+\sqrt{\ln \delta^{-1}}
$$

We first prove two auxiliary lemmas. We use some known estimations. Namely, if $u>1 / \sqrt{2}$, then (see [15])

$$
\begin{equation*}
\int_{u}^{\infty} e^{-t^{2}} d t \leqslant \frac{1}{2 u} e^{-u^{2}}, \quad \frac{2}{\sqrt{\pi}} \int_{0}^{u} e^{-t^{2}} d t \leqslant 1-\frac{1}{2 \sqrt{\pi}} e^{-u^{2}} \tag{7}
\end{equation*}
$$

Lemma 1. Let $2 \leqslant q<\infty$ and $\delta \in\left[0, \frac{1}{2}\right]$. For some constant c_{0} depending only on q, we have

$$
\begin{equation*}
\gamma\left(x \in \mathbb{R}^{m}:\|x\|_{q} \geqslant c_{0}\left(m^{1 / q}+\sqrt{\ln \delta^{-1}}\right)\right\} \leqslant \delta . \tag{8}
\end{equation*}
$$

Proof. Let $f(x)=\|x\|_{4}$. Then $|f(x)-f(y)| \leqslant\|x-y\|_{2}$; hence f is a Lipschitz map on \mathbb{R}^{m} with Lipschitz constant $\sigma=1$. By the Maurey-Pisier inequality, see [14], we have for all $t>0$,

$$
\begin{equation*}
\gamma(f-E f \geqslant t) \leqslant \exp \left(-t^{2} / 2 \sigma\right)=\exp \left(-t^{2} / 2\right) \tag{9}
\end{equation*}
$$

But by Kahane's inequality, see [4], $E_{f} \asymp\left(E f^{q}\right)^{1 / q} \asymp q^{1 / 2} m^{1 / q}$. Therefore for some absolute constant $c>0$.

$$
\begin{equation*}
\gamma\left(f \geqslant t+c q^{1 / 2} m^{1 / q}\right) \leqslant \exp \left(-t^{2} / 2\right) \tag{10}
\end{equation*}
$$

and taking $t=\left(\ln \delta^{-1}\right)^{1 / 2}$ completes the proof.
Lemma 2. Let $\delta \in\left[0, e^{-1}\right]$. For any vector $z \in \mathbb{R}^{m}$, we have

$$
\gamma\left(x:|(x, z)| \geqslant c_{0}^{\prime}\|z\|_{2} \sqrt{\ln \delta^{-1}}\right) \geqslant \delta,
$$

where (\cdot, \cdot) is the standard inner product, and c_{0}^{\prime} an absolute constant.
Proof. Since γ is an invariant measure with respect to orthogonal transformation in the space \mathbb{R}^{m}, it suffices to prove the lemma for the vector $z^{*}=\left(\|z\|_{2}, 0, \ldots, 0\right)$. Using inequality (7) we have

$$
\gamma\left(x:\left|\left(x, z^{*}\right)\right| \geqslant\|z\|_{2} \sqrt{\ln \delta^{-1}}\right) \geqslant \frac{1}{2} \sqrt{\frac{\delta}{\pi}}
$$

The lemma now follows.

Proof of Theorem 4. We first prove the upper bound for the linear (n, δ)-widths. Consider the set in \mathbb{R}^{m} :

$$
Q_{\delta}=\left\{x \in \mathbb{R}^{m}:\|x\|_{q} \geqslant c_{0}\left(m^{1 / q}+\sqrt{\ln \delta^{-1}}\right)\right\} .
$$

From Lemma 1 we have the estimation $\gamma\left(Q_{\delta}\right) \leqslant \delta$. Therefore

$$
\lambda_{n, \delta} \equiv \lambda_{n, \delta}\left(\mathbb{R}^{m}, l_{q}^{m}, \gamma\right) \leqslant \sup _{x \in \mathbb{R}^{m} \backslash Q_{\delta}}\|x\|_{q} \leqslant c_{0}\left(m^{1 / q}+\sqrt{\ln \delta^{-1}}\right)
$$

To prove the lower bound, let ε be any positive number. We define a linear operator T with rank at most n and a set $G \subset \mathbb{R}^{m}$ with measure $\gamma(G) \leqslant \delta$, for which

$$
\begin{equation*}
\lambda_{n, \delta} \geqslant \sup _{x \in \mathbb{R}^{m} \backslash G}\|x-T x\|_{q}-\varepsilon \tag{11}
\end{equation*}
$$

We can describe the operator T by

$$
T x=\sum_{k=1}^{n}\left(x, u_{k}\right) v_{k} \quad\left(x \in \mathbb{R}^{m}\right)
$$

where u_{k}, v_{k} are vectors in \mathbb{R}^{m}. We have for $1 / q+1 / q^{\prime}=1$

$$
\begin{align*}
\|x-T x\|_{q} & =\max _{y \in B_{q^{m}}^{\prime}}(x-T x, y)=\max _{y}\left(y-\sum_{k=1}^{n}\left(y, v_{k}\right) u_{k}, x\right) \\
& \geqslant \max _{1 \leqslant i \leqslant m}\left|\left(e_{i}-\sum_{k=1}^{n}\left(e_{i}, v_{k}\right) u_{k}, x\right)\right|, \tag{12}
\end{align*}
$$

where e_{i} is the i th unit vector. Let $z_{i}=e_{i}-\sum_{k=1}^{n}\left(e_{i}, v_{k}\right) u_{k}$. Consider the set

$$
H=\bigcup_{i=1}^{m} H_{i}, \quad H_{i}=\left\{x \in \mathbb{R}^{m}:\left|\left(x, z_{i}\right)\right| \geqslant c_{0}^{\prime} \sqrt{\frac{1}{2} \ln \delta^{-1}}\right\}
$$

We know (see [16]) that for any vectors $u_{k}, v_{k}, k=1, \ldots, n$, there exists an index i_{0} such that $\left\|z_{i_{0}}\right\|_{2} \geqslant 1 / \sqrt{2}$. Therefore from Lemma 2

$$
\begin{equation*}
\gamma(H) \geqslant \gamma\left(H_{i_{0}}\right) \geqslant \gamma\left(x:\left(x, z_{i_{0}}\right) \mid \geqslant c_{0}^{\prime}\left\|z_{i_{0}}\right\|_{2} \sqrt{\ln \delta^{-1}}\right)>\delta . \tag{13}
\end{equation*}
$$

From inequalities (12) and (13) and since $\gamma(G) \leqslant \delta$, we have

$$
\sup _{x \in \mathbb{R}^{m}, G}\|x-T x\|_{q} \geqslant c_{0}^{\prime} \sqrt{\frac{1}{2} \ln \delta^{-1}} .
$$

From here and inequality (11), letting $\varepsilon \rightarrow 0$, we obtain

$$
\begin{equation*}
\lambda_{n, \delta} \geqslant c_{0}^{\prime} \sqrt{\frac{1}{2} \ln \delta^{-1}} . \tag{14}
\end{equation*}
$$

We obtain one more lower estimate for $\lambda_{n, \delta}$. Using Hölder's inequality we have

$$
\lambda_{n, \delta} \geqslant m^{1 / q-1 / 2} \lambda_{n, \delta}\left(\mathbb{R}^{m}, l_{2}^{m}, \gamma\right)=m^{1 / q-1 / 2} \inf _{G: \gamma(G) \leqslant \delta} \sup _{\left.x \in \mathbb{R}^{m}\right\rangle G} p(x),
$$

where $p(x)=\left(\sum_{i=1}^{m-n} x_{i}^{2}\right)^{1 / 2}$. From inequality (6) it follows that

$$
\gamma(p(x) \geqslant c \sqrt{m})=\gamma_{m-n}\left(\mathbb{R}^{m-n} \backslash B_{2}^{m-n}(c \sqrt{m-n})\right) \geqslant \frac{1}{2} .
$$

Therefore, for any $\delta<\frac{1}{2}$ using $m \geqslant 2 n$, we obtain

$$
\begin{equation*}
\lambda_{n, \delta} \geqslant m^{1 / q-1 / 2} c \sqrt{m-n} \geqslant \frac{c}{\sqrt{2}} m^{1 / q} . \tag{15}
\end{equation*}
$$

From inequalities (14) and (15) we obtain the lower estimate for $\lambda_{n, \delta}$, and Theorem 4 is proved.
Consider in the space \mathbb{R}^{m} the Gaussian measures with parameter α given by

$$
\bar{\gamma}=\bar{\gamma}_{m}=\left(\frac{\alpha}{2 \pi}\right)^{m / 2} \int_{G} \exp \left(-\frac{\alpha}{2} \sum_{i=1}^{m} x_{i}^{2}\right) d x_{1} \cdots \cdot d x_{m} .
$$

Set $B=B_{2}^{m}(\sqrt{m})$. From inequality (6) for $\alpha>\alpha_{0} \equiv 1+2 \ln 10$ we have

$$
\bar{\gamma}(B) \geqslant \frac{1}{2} .
$$

Define on \mathbb{R}^{m} the conditional measure concentrated on the ball B, i.e.,

$$
\bar{\gamma}^{\prime}(G)=\frac{\bar{\gamma}(G \cap B)}{\bar{\gamma}(B)} \quad\left(G \subset \mathbb{R}^{m}\right) .
$$

Obviously $\bar{\gamma}^{\prime}(B)=1$. Therefore $\bar{\gamma}^{\prime}$ is a probability measure defined on the Borel subsets of the ball B and

$$
\bar{\gamma}^{\prime}(G)=\frac{\bar{\gamma}(G)}{\bar{\gamma}(B)} \quad(G \subset B)
$$

Lemma 2A. If $\delta \in[\exp (-m / 2), 1 / 2]$ and $z \in \mathbb{R}^{m}$, then

$$
\begin{equation*}
\bar{\gamma}^{\prime}\left(x \in B:|(x, z)| \geqslant c^{\prime}\|z\|_{2} \sqrt{\frac{1}{2} \ln \delta^{-1}}\right) \geqslant \delta, \tag{16}
\end{equation*}
$$

where c^{\prime} is an absolute constant.

Indeed from the fact that $\bar{\gamma}^{\prime}$ is an invariant measure with respect to orthogonal transposition, it follows that

$$
\begin{aligned}
g \equiv & \bar{\gamma}\left(x \in \mathbb{R}^{m}:|(x, z)| \geqslant\|z\|_{2} \sqrt{\ln \delta^{-1}},\|x\|_{2} \leqslant \sqrt{m}\right) \\
= & 2\left(\frac{\alpha}{2 \pi}\right)^{m / 2} \int_{\sqrt{\ln \delta-1}}^{\sqrt{m}} e^{-(\alpha / 2) x_{1}^{2}} d x_{1} \\
& \times \int_{B_{2}^{m-1}\left(\sqrt{m-x_{1}^{2}}\right)} \exp \left(-\frac{\alpha}{2}\left(x_{2}^{2}+\cdots+x_{m}^{2}\right)\right) d x_{2} \cdots d x_{m} .
\end{aligned}
$$

Further, from the definitions of δ and α we have

$$
\begin{align*}
g \geqslant & 2\left(\frac{\alpha}{2 \pi}\right)^{m / 2} \int_{\sqrt{\ln \delta^{-1}}}^{\sqrt{3 / 2 \ln \delta^{-1}}} e^{-\left(x^{\prime} / 2\right) x_{1}^{2}} d x_{1} \\
& \times \int_{B_{2}^{m-1}\left(\sqrt{m-3 / 2 \ln \delta^{-1}}\right)} \exp \left(-\frac{\alpha}{2}\left(x_{2}^{2}+\cdots+x_{m}^{2}\right)\right) d x_{2} \cdots d x_{m} \\
\geqslant & \sqrt{\frac{2 \alpha}{\pi}} \delta^{3 \alpha / 4} \cdot \bar{\gamma}_{m-1}\left(B_{2}^{m-1}\left(c_{1} \sqrt{m}\right)\right) \tag{17}
\end{align*}
$$

where $c_{1}=\frac{1}{2}$. From inequality (6) it follows that $\bar{\gamma}_{m-1}\left(B_{2}^{m-1}\left(c_{1} \sqrt{m}\right)\right) \geqslant c_{0}^{\prime}$, where c_{0}^{\prime} is an absolute constant. Hence using inequality (17) and the definition of α we have

$$
\bar{\gamma}^{\prime}\left(x \in B:|(x, z)| \geqslant\|z\|_{2} \sqrt{\ln \delta^{-1}}\right) \geqslant g \geqslant \sqrt{\frac{2 \alpha}{\pi}} c_{0}^{\prime} \delta^{3 x / 4} \geqslant c_{2} \delta^{3 x / 4} .
$$

Inequality (16) now follows.

Corollary 1. Let $2 \leqslant q<\infty$ and $\alpha>\alpha_{0}$. For the linear (n, δ)-widths of the ball B, with measure $\bar{\gamma}^{\prime}$, in the space l_{q}^{m} we have

$$
\begin{equation*}
\lambda_{n, \delta}\left(B, l_{q}^{m}, \bar{\gamma}^{\prime}\right) \asymp \min \left\{\sqrt{m}, \alpha^{-1 / 2}\left(m^{1 / q}+\sqrt{\ln \delta^{-1}}\right)\right\}, \tag{18}
\end{equation*}
$$

where $m \geqslant 2 n$ and $\delta \in\left[0, \frac{1}{2}\right]$.
The upper estimate in (18) follows directly from Theorem 4 and the obvious inequality $\lambda_{n, \delta}\left(B, l_{q}^{m}, \bar{\gamma}^{\prime}\right) \leqslant \sqrt{m}$. The lower estimate in (18) for $\delta \geqslant \delta_{0}, \quad \delta_{0}=\exp (-\alpha m)$, repeats the proof of the lower estimate in Theorem 4. However, we must use Lemma 2A rather than Lemma 2. Then we have

$$
\begin{equation*}
\lambda_{n . \delta}\left(B, l_{q}^{m}, \bar{\gamma}^{\prime}\right) \geqslant c \alpha^{-1 / 2}\left(m^{1 / q}+\sqrt{\ln \delta^{-1}}\right) \tag{19}
\end{equation*}
$$

If $\delta<\delta_{0}$, then from (19) we have

$$
\begin{equation*}
\lambda_{n, \delta}\left(B, l_{q}^{m}, \bar{\gamma}^{\prime}\right) \geqslant \lambda_{n, \delta_{0}}\left(B, l_{q}^{m}, \bar{\gamma}^{\prime}\right) \geqslant c \sqrt{m} . \tag{20}
\end{equation*}
$$

From the inequalities (19) and (20) we obtain (18).

3. Proof of Theorem 1

First we give a few auxiliary statements. Consider two sequences of integers $m_{0}=0, m_{N}=3^{N-1}$ and $l_{0}=0, l_{N}=\sum_{s=1}^{N} m_{s}$, where $N=1,2, \ldots$. We decompose the integers \mathbb{Z} on blocks $\left\{A_{N}\right\}_{N=-\infty}^{\infty}$, where $\Delta_{0}=\{0\}$, $\Delta_{N}=\left\{l_{N}, \ldots, l_{N+1}-1\right\}$ for $N=1,2, \ldots$, and $\Delta_{N}=-\Delta_{-N}$ for $N=-1,-2, \ldots$. For negative N, set $m_{N}=m_{-N}, l_{N}=l_{-N}$. The cardinality of the block Δ_{N} equals m_{N}.

For any number N we denote T_{N} the space consisting of the trigonometric series $y(\cdot)=\sum_{k \in \Delta_{N}} c_{k} \exp (i k(\cdot))$. We define on the space T_{N} the norm

$$
\|y\|_{q, N}=\left(\sum_{s=0}^{m_{N}-1}\left|y\left(\frac{2 \pi s}{m_{N}}\right)\right|^{q}\right)^{1 / q} .
$$

From the Hardy-Littlewood inequality (see [21, Vol. 2, p.4]) for any $1<q<\infty$ we have

$$
\begin{equation*}
\|y\|_{L_{q}} \asymp m_{N}^{-1 / q}\|y\|_{q, N} \quad\left(y \in T_{N}\right) . \tag{21}
\end{equation*}
$$

In particular for $q=2$ we have the equality $\|y\|_{L_{2}}=m_{N}^{-1 / 2}\|y\|_{2, N}$. From the Marcinkiewicz theorem (see [21]) we have

$$
\begin{equation*}
\left\|y^{(\alpha)}\right\|_{L_{q}} \asymp m^{\alpha}\|y\|_{L_{q}} \quad\left(y \in T_{N}, \alpha \in \mathbb{R}\right) . \tag{22}
\end{equation*}
$$

For every N we consider, in the space W_{2}^{r}, the projection operator

$$
\begin{equation*}
P_{N}: \sum_{k=-\infty}^{\infty} c_{k} e_{k} \rightarrow \sum_{k \in A_{N}} c_{k} e_{k} . \tag{23}
\end{equation*}
$$

Lemma 3. Set

$$
\alpha_{N, \delta}=\frac{c_{0}^{\prime}\left(m_{N}^{1 / q}+\sqrt{\ln \delta^{-1}}\right)}{m_{N}^{r+1 / q+(s-1 / 2}},
$$

where c_{0}^{\prime} is some constant depending just on r and q. Then for any $\delta \in\left[0, \frac{1}{2}\right]$ we have

$$
\mu\left(x \in W_{2}^{r}:\left\|P_{N} x\right\|_{L_{q}} \geqslant \alpha_{N, \delta}\right) \leqslant \delta .
$$

Proof. Since

$$
P_{N} x=\sum_{k \in A_{N}}\left\langle x, e_{k}\right\rangle e_{k}=\sum_{k \in A_{N}}\left\langle x^{(-r)}, e_{k}^{(-r)}\right\rangle_{1} \cdot e_{k}
$$

from (22) and from the definition of Gaussian measure (2) we have

$$
\begin{aligned}
\mu & \equiv \mu\left(x:\left\|P_{N} x\right\|_{L_{q}} \geqslant \alpha_{N, \delta}\right) \leqslant \mu\left(x:\left\|\sum_{k \in \Delta_{N}}\left\langle x, e_{k}^{(-r)}\right\rangle_{1} e_{k}\right\|_{L_{q}} \geqslant c_{1} m_{N}^{r} \alpha\right) \\
& =\left(\prod_{k=I_{N}}^{L_{N+1}-1} 2 \pi \lambda_{k}\right)^{-1 / 2} \int_{\delta} \exp \left(-\frac{1}{2} \sum_{k=I_{N}}^{l_{N+1}-1} \lambda_{k}^{-1} y_{k}\right) d y_{l_{N}} \cdots d y_{l_{N+1}-1},
\end{aligned}
$$

where

$$
\mathscr{D}=\left\{\left(y_{l_{N}}, \ldots, y_{I_{N+1}-1}\right) \in \mathbb{R}^{m_{N}}:\left\|\sum_{k=I_{N}}^{I_{N+1}-1} y_{k} e_{k}\right\|_{L_{q}} \geqslant c_{1} m_{N}^{r} \alpha_{N, \delta}\right\} .
$$

Recall that $\lambda_{k}=a|k|^{-s}$. By the substitution $t_{k} / \sqrt{\lambda_{k}} \rightarrow t_{k}$ and equality (22) we have

$$
\begin{equation*}
\mu \leqslant(2 \pi)^{-m_{N} / 2} \int_{\mathscr{F}_{1}} \exp \left(-\frac{1}{2} \sum_{k=1}^{m_{N}} y_{k}\right) d y_{1} \cdots d y_{m_{N}}=\gamma_{m_{N}}\left(\mathscr{D}_{1}\right) \tag{24}
\end{equation*}
$$

where $\mathscr{D}_{1}=\left\{y \in \mathbb{R}^{m_{N}}:\left\|\sum_{k=1}^{m_{N}} y_{k} e_{k}\right\|_{L_{q}} \geqslant c_{2} m_{N}^{r+s / 2}\right\}$.
From (21) it follows that the set \mathscr{D}_{1} is contained in the set

$$
\mathscr{D}_{2}=\left\{y \in \mathbb{R}^{m_{N}}:\left(\sum_{u=1}^{m_{N}}\left|\sum_{k=1}^{m_{N}} y_{k} e_{k}\left(\frac{2 \pi u}{m_{N}}\right)\right|^{q}\right)^{1 / q} \geqslant c_{3} m_{N}^{r+s / 2+1 / 4} \alpha_{N, \delta}\right\}
$$

Since the matrix $\left(e_{k}\left(2 \pi u / m_{N}\right) / \sqrt{m_{N}}\right)_{k, u=1, \ldots, m_{N}}$ is orthogonal, and finitedimensional Gaussian measure is invariant with respect to orthogonal transposition in the space $\mathbb{R}^{m_{N}}$, we have

$$
\begin{equation*}
\gamma_{m_{N}}\left(\mathscr{D}_{1}\right) \leqslant \gamma_{m_{N}}\left(\mathscr{D}_{2}\right)=\gamma_{m_{N}}\left(\mathscr{D}_{3}\right) \tag{25}
\end{equation*}
$$

where $\mathscr{D}_{3}=\left\{y \in \mathbb{R}^{m_{N}}:\left(\sum_{k=1}^{m_{N}}\left|y_{k}\right|^{q}\right)^{1 / q} \geqslant c_{3} m_{N}^{r+(s-1) / 2+1 / q} \alpha_{N, \delta}\right\}$.
Let $c_{0}^{\prime}=c_{0} / c_{3}$, where c_{0} is the constant from Lemma 1. Using the definition $\alpha_{N, \delta}$ from Lemma 1, we obtain

$$
\begin{equation*}
\gamma_{m_{N}}\left(\mathscr{D}_{3}\right)=\gamma_{m_{N}}\left(y \in \mathbb{R}^{m_{N}}:\|y\|_{q} \geqslant c_{0}\left(m_{N}^{1 / q}+\sqrt{\ln \delta^{-1}}\right)\right) \leqslant \delta . \tag{26}
\end{equation*}
$$

From inequalities (24)-(26) we obtain Lemma 3.

Proof of Theorem 1. We first prove the upper bound for linear (n, δ)widths $\lambda_{n, \delta}\left(W_{2}^{\prime}, L_{4}, \mu\right)$. Denote $\delta_{N}=\delta \cdot 3^{\left(N^{\prime}-|N|\right)}, N= \pm N^{\prime}, \pm\left(N^{\prime}+1\right), \ldots$, $N^{\prime}=[\log n / 2]$ (where [] is the integer part of number and $\log u=\log _{3} u$). Consider the sequence of sets

$$
G_{N}=\left\{x \in W_{2}^{r}:\left\|P_{N} x\right\|_{L_{q}} \geqslant \alpha_{N, \delta_{N}}\right\} .
$$

Using Lemma 3 we estimate the measure of the set $G=\bigcup_{\mid N_{\mid} \geqslant N^{\prime}} G_{N}$

$$
\begin{equation*}
\mu(G) \leqslant \sum_{|N| \geqslant N^{\prime}} \mu\left(G_{N}\right) \leqslant \sum_{|N| \geqslant N^{\prime}} \delta_{N} \leqslant \delta \sum_{|N| \geqslant N^{\prime}} 3^{N^{\prime}-|N|} \ll \delta . \tag{27}
\end{equation*}
$$

Since $m_{N}=3^{|N|}$, we have

$$
\begin{align*}
\sum_{|N| \geqslant N^{\prime}} \alpha_{N,} \delta_{N} & =c_{0}^{\prime} \sum_{|N| \geqslant N^{\prime}} \frac{m_{N}^{1 / q}+\sqrt{\ln \delta_{N}^{-1}}}{m_{N}^{r+1 / q+(s-1) / 2}} \\
& \ll \sum_{|N| \geqslant N^{\prime}} 3^{-[r+(s-1) / 2]|N|}\left(1+3^{-|N| / q} \sqrt{\ln \delta_{N}^{-1}}\right) \\
& \ll 3^{-[r+(s-1) / 2] N^{\prime}}\left(1+3^{-N^{\prime} / q} \sqrt{\ln \delta^{-1}}\right) \\
& \ll \frac{1+n^{-1 / q} \sqrt{\ln \delta^{-1}}}{n^{r+(s-1 / 2}} . \tag{28}
\end{align*}
$$

Consider the linear operator $A_{n}=\sum_{N=-N}^{N_{N}} P_{N}$. From the inequalities (27) and (28) we have for linear (n, δ)-widths the estimate

$$
\begin{aligned}
\lambda_{n, \delta}\left(W_{2}^{r}, L_{q}, \gamma\right) & \leqslant \lambda\left(W_{2}^{r} \backslash G, A_{n}, L_{q}\right) \\
& \ll \sup _{x \in W_{2}^{\prime} \backslash G}\left\|\sum_{|N| \geqslant N^{\prime}} P_{N} x\right\|_{L_{q}} \\
& \leqslant \sum_{|N| \geqslant N^{\prime}} \alpha_{N, \delta_{N}} \ll \frac{1+n^{-1 / q} \sqrt{\ln \delta^{-1}}}{n^{r+(s-1) / 2}} .
\end{aligned}
$$

We now prove the lower estimate. Let ε be any prositive number. Denote by A_{n} the linear operator of rank at most n, and by G_{δ} the set in W_{2}^{r} with measure $\mu\left(G_{\delta}\right) \leqslant \delta$ such that

$$
\begin{equation*}
\lambda_{n, \delta}\left(W_{2}^{r}, L_{q}, \mu\right) \geqslant \lambda\left(W_{2}^{r} \backslash G_{\delta}, A_{n}, L_{q}\right)-\varepsilon . \tag{29}
\end{equation*}
$$

Consider the projection operator in the space L_{q} given by $Q_{n}: \sum_{k=-\infty}^{\infty} c_{k} e_{k} \rightarrow \sum_{k=n}^{3 n+1} c_{k} e_{k}$. From the Marcinkewicz theorem we have the inequality $\left\|Q_{n} x\right\|_{L_{q}} \leqslant c_{1}\|x\|_{L_{q}}$ for all $x \in L_{q}$. Further, using (22) and the definition of the Gaussian measure (2) we have

$$
\begin{align*}
\mu(x & \left.\in W_{2}^{r}:\left\|x-\Lambda_{n} x\right\|_{L_{q}} \geqslant c_{1}^{-1} \alpha_{N, \delta}\right) \\
& \geqslant \mu\left(\left\|Q_{n} x-Q_{n} A_{n} x\right\|_{L_{q}} \geqslant \alpha_{n, \delta}\right) \\
& =\mu\left(\left\|\sum_{k=n}^{3 n+1}\left\langle x, e_{k}\right\rangle\left(e_{k}-Q_{n} \Lambda_{n} e_{k}\right)\right\|_{L_{q}} \geqslant \alpha_{n, \delta}\right) \\
& \geqslant \mu\left(\left\|\sum_{k=n}^{3 n+1}\left\langle x, e_{k}^{(-r)}\right\rangle_{1}\left(e_{k}-Q_{n} \Lambda_{n} e_{k}\right)\right\|_{L_{q}} \geqslant c_{2} n^{r} \alpha_{n, \delta}\right) \\
& =\left(\prod_{k=n}^{3 n+1} \frac{1}{2 \pi \lambda_{k}}\right)^{1 / 2} \int_{\mathscr{L}} \exp \left(-\frac{1}{2} \sum_{k=n}^{3 n+1} \lambda_{k}^{-1} y_{k}^{2}\right) d y_{n} \cdots d y_{3 n+1} \tag{30}
\end{align*}
$$

where

$$
\mathscr{D}=\left\{y=\left(y_{n}, \ldots, y_{3 n+1}\right) \in \mathbb{R}^{2 n+1}:\left\|\sum_{k=n}^{3 n+1} y_{k}\left(e_{k}-Q_{n} A_{n} e_{k}\right)\right\|_{L_{q}} \geqslant c_{2} n^{r} \alpha_{n}\right\} .
$$

With the help of the substitution $t_{k} / \sqrt{\lambda_{k}} \rightarrow t_{k}$ and equality (21), we obtain

$$
\begin{align*}
& \left(\prod_{k=n}^{3 n+1} 2 \pi \lambda_{k}\right)^{-1 / 2} \int_{\mathscr{Q}} \exp \left(-\frac{1}{2} \sum_{n}^{3 n+1} \lambda_{k}^{-1} y_{k}\right) d y_{n} \cdots d y_{3 n+1} \\
& \quad \geqslant\left(\prod_{k=0}^{2 n} 2 \pi\right)^{-1 / 2} \int_{\mathscr{Q}_{1}} \exp \left(-\frac{1}{2} \sum_{k=0}^{2 n} y_{k}^{2}\right) d y_{0} \cdots d y_{2 n}=\gamma_{2 n+1}\left(\mathscr{D}_{1}\right) \tag{31}
\end{align*}
$$

where

$$
\mathscr{D}_{1}=\left\{y \in \mathbb{R}^{2 n+1}:\left(\sum_{i=0}^{2 n}\left|\sum_{k=0}^{2 n} y_{k}\left[e_{k}\left(\theta_{l}\right)-\left(Q_{n} A_{n} e_{k}\right)\left(\theta_{l}\right)\right]\right|^{q}\right)^{1 / q} \geqslant c_{3} n^{r+s / 2+1}\right\}
$$

and $\theta_{l}=2 \pi l /(2 n+1)$. Consider the two matrices

$$
E=\left(\frac{e_{k}\left(\theta_{l}\right)}{\sqrt{2 n+1}}\right)_{k, l=0, \ldots, 2 n} \quad \text { and } \quad H=\left(\frac{Q_{n} A_{n} e_{k}\left(\theta_{l}\right)}{\sqrt{2 n+2}}\right)_{k, l=0, \ldots, 2 n}
$$

Then we can write

$$
\begin{aligned}
\mathscr{D}_{1} & =\left\{y \in \mathbb{R}^{2 n+1}:\|E y-H y\|_{q} \geqslant c_{3} n^{r+(s-1) / 2+1 / q} \alpha_{n, \delta}\right\} \\
& =\left\{y \in \mathbb{R}^{2 n+1}:\|E y-H y\|_{q} \geqslant c_{3} c_{0}^{\prime}\left(n^{1 / 4}+\sqrt{\ln \delta^{-1}}\right)\right\} .
\end{aligned}
$$

Since E is an orthogonal matrix and the finite-dimensional Gaussian measure $\gamma_{2 n+1}$ is invariant with respect to orthogonal transposition in the space $\mathbb{R}^{2 n+1}$, we have

$$
\begin{equation*}
\gamma_{2 n+1}\left(\mathscr{D}_{1}\right)=\gamma_{2 n+1}\left(\mathscr{D}_{2}\right) \tag{32}
\end{equation*}
$$

where

$$
\mathscr{D}_{2}=\left\{y \in \mathbb{R}^{2 n+1}:\left\|y-H E^{-1} y\right\|_{q} \geqslant c_{3} c_{0}^{\prime}\left(n^{1 / q}+\sqrt{\ln \delta^{-1}}\right)\right\} .
$$

From the definition of the matrix H it follows that the rank of $H E^{-1}$ is at most n. Therefore from Theorem 4, for some constant c_{0}^{\prime}, we have $\gamma_{2 n+1}\left(\mathscr{D}_{2}\right)>\delta$. Further from (30)-(32) it follows that

$$
\mu\left(x \in W_{2}^{r}:\left\|x-\Lambda_{n} x\right\|_{L_{q}} \geqslant c_{1}^{-1} \alpha_{n, \delta}\right) \geqslant \gamma_{2 n+1}\left(\mathscr{D}_{2}\right)>\delta .
$$

Hence we obtain

$$
\lambda\left(W_{2}^{r} \backslash G_{\delta}, A_{n}, L_{q}\right) \geqslant c_{1}^{-1} \alpha_{n, \delta} .
$$

Letting $\varepsilon \rightarrow 0$ in inequality (29) we obtain the lower estimate. Theorem 1 is proved.

The proof of Theorem 2 is analogous to the proof of Theorem 1. Indeed, the upper estimate for the linear (n, δ)-width follows from the inequality

$$
\lambda_{n . \delta}\left(B W_{2}^{r}, L_{q}, \mu^{\prime}\right) \leqslant \lambda_{n, \delta}\left(W_{2}^{r}, L_{q}, \mu\right) \ll \frac{1+n^{-1 / q} \sqrt{\ln \delta^{-1}}}{n^{r+(s-1) / 2}}
$$

and from the known estimate for linear n-widths (see [3])

$$
\lambda_{n, \delta}\left(B W_{2}^{r}, L_{q}, \mu^{\prime}\right) \leqslant \lambda_{n, 0}\left(B W_{2}^{r}, L_{q}, \mu^{\prime}\right)<n^{-r+1 / 2-1 / q} .
$$

The proof of the lower estimate repeats the proof in Theorem 1. But here, instead of Theorem 4 we use Corollary 1.

The proof of Theorem 3 repeats the proof of Theorem 1. But in the lower estimate, instead of the operator Λ_{n}, we consider the zero operator.

We remark that an announcement about results on Kolmogorov (n, δ)-widths of the W_{2}^{r} spaces with measure μ in the L_{q}-norm appears in Maiorov [10,22]. There also appear analogous results for Wiener spaces.

References

1. A. E. Buslaev, About best approximation of random functions and functionals, in "Trud. of Th'd Saratov Winter School," Vol. 2, pp. 14-17, Saratov University, 1988.
2. K. Hollig, Approximationszahlen von Sobolev-Einbettungen, dissertation, Bonn, 1979.
3. R. S. Ismagilov, Diameters of sets in normed linear spaces and approximation of functions with trigonometric polynomials, Uspekhi Mat. Nauk 29 (1974), 161-178.
4. J. P. Kahane, Some random series of functions, in "Heath Math. Monograhps," Heath, Lexington, 1968.
5. H. H. Kuo, Gaussian measures in Banach spaces, in "Lecture Notes in Mathematics," Vol. 463, Springer-Verlag, Berlin, 1975.
6. V. E. Maiorov, About linear widths of Sobolev classes, Dokl. Akad. Nauk UzSSR 243 (1978), 1127-1130.
7. V. E. Malorov, Discretisation of a problem about n-widths, Uspekhi Mat. Nauk 30 (1976), 179-180.
8. V. E. Maiorov, About linear diameters of Sobolev classes and chains of extremal subspaces, Mat. Sb. 113 (1980), 437-463.
9. V. E. Maiorov, "About Widths of Space, Equipped with a Measure," pp. 91-105, Yaroslav. State University, Yaroslavle, 1990.
10. V. E. Maiorov, Widths of spaces, equipped with a Gaussian measure, Dokl. Akad. Nauk UzSSR 323 (1992), 233-237.
11. P. Mathe, s-number in information-based complexity, J. Complexity 6 (1990), 41-66.
12. S. M. Nikolski, "Approximation of the Many Variables Functions and Theorems of Embedding," Nauka, Moscow, 1969.
13. A. Pinkus, " n-Widths in Approximation Theory," Springer-Verlag, Berlin, 1985.
14. G. Pisier, Probabilistic methods in the geometry of Banach spaces, in "Lecture Notes in Mathematics," Vol. 1206, pp. 167-241, Springer, New York/Berlin, 1986.
15. G. E. Shilov and Fan Dyk Tin, "Integral Measure and Derivative on Linear Spaces," Nauka, Moskow, 1967, [In Russian].
16. S. B. Stechkin, About best approximation of the given function classes with any polynomials, Uspekhi Mat. Nauk 9 (1954), 133-134.
17. V. M. Tıкномirov, "Some Problems in Approximation Theory," Moscow State University, Moscow, 1976. [In Russian]
18. J. F. Traub and H. Wozniakowski, "A General Theory of Optimal Algorithm," Academic Press, New York, 1980.
19. J. F. Traub, G. W. Wasilkowski, and H. Woznlakowski, "Information-Based Complexity," Academic Press, New York, 1988.
20. S. M. Voronin and N. Temirgaliev, About some applications of Banach measure, Izv. Akad. Nauk Kasakh. SSR Ser. Fiz.-Mat. 5 (1984), 8-11.
21. A. Zygmund, "Trigonometric Series," Vol. 2, Cambridge Univ. Press, London/New York, 1959. [In Russian]
22. V. E. Maiorov, Kolmogorov (n, δ)-widths of the spaces of the smooth functions, Math. Sbornik 184 (1993), 49-70.
